Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
نویسندگان
چکیده
Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water-organic liquid, water-surfactant, surfactant-organic liquid, is relatively high (in the range of 65-370 MW/m2 K) compared to that for solid-liquid interfaces ( approximately 10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid-liquid interfaces.
منابع مشابه
A Molecular-Based Equation of State for Vapour-liquid Equilibrium of Pure Substances
A semi-empirical equation of state has been studied for modelling vapour-liquid data of pure substances. The specific molecular based equation of state is employed here as basis because of its mathematical simplicity. The semi-empirical extension has been accomplished to real fluids by correlating the density dependence of the attraction term to vapour liquid data of a reference fluid. The resu...
متن کاملWettability of Liquid Mixtures on Porous Silica and Black Soot Layers
Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...
متن کاملNumerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملسمتگیری مولکولهای بلور مایع نماتیک در وضعیت دو بعدی و اثر چنگ زدگیهای متناهی و نامتناهی
In this paper, the director distribution is calculated for a nematic liquid crystal, in the cell with different surface anchoring conditions and external fields. The effects of finite and infinite surface anchoring on molecular orientations for one dimensional geometry are discussed. In these situations, the planar alignment is considered. Then, in a two dimensional geometry the planar and homo...
متن کاملA Kinetic Investigation of a Carrier-Mediated Transport through a Bulk Liquid Membrane
The kinetics of the potassium thiocyanate transport mediated by dicyclohexyl-18-crown-6 (L) through a bulk liquid membrane is studied experimentally and theoretically. The proposed model is based on the assumption of a pure diffusion of the complex salt [K·L]+SCN¯ through the liquid membrane stagnant films at the interfaces. It illustrates the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2005